The changing climate and its effect on mortality

do temperature and air pollution concentrations interact causing excess mortality?

> Yuri Bruinen de Bruin - PhD European Commission - Joint Research Centre Institute for Health and Consumer Protection Physical and Chemical Exposure Unit yuri.bruinen-de-bruin@jrc.it

Investigated associations

3. Do ambient temperature and air pollution have a synergistic effect on mortality?

1. Are air pollution and mortality associated?

2. Are ambient temperature and mortality associated?

Common air pollutants and sources

Table 1. Categorized sources of outdoor air pollutants

Sources of outdoor	PM10	BS	SO ₄ ²⁻	SO ₄ ²⁻ NO ₃ ⁻		SO ₂	NO ₂	СО
pollutant s	P	- <u>-</u>		~			<u> </u>	<u>_</u>

Long range transport

Other combustion

Soil re-suspension

Part 1. Are air pollution and mortality associated?

Air pollution and mortality associations

Table 2. References of studies that found associations between air pollution and mortality

		lan di kana di Na kana di kana d							
References	PM	BS	SO ₄ ²⁻	NO ₃ -	O ₃	SO_2	NO_2	CO	Country
Anderson H.R. et al., 1996, 1997									6 EU cities
Ballester F. et al., 1996							K		Spain
Hoek G. et al., 2000									Netherlands
Katsouyanni K. et al., 1997, 2000									Greece/US
Michelozzi P. et al., 1998									Italy
Samet J.M. et al., 1999									US
Schwartz J. 1994, 1996									US
Spix C. et al., 1998									6 EU cities
Touloumi G. et al., 1997									Greece
Vigotti M.A. et al., 1995									Italy

Some air pollution-mortality associations found in Europe-1

- APHEA study (Air Pollution and Health: A European Approach).
 - Goal: to study the short-term effect of ambient particles on mortality
 - 29 European cities

The estimated increase in the daily number of deaths for all ages for a 10 ug/m^3 increase in daily PM_{10} or Black Smoke concentrations was 0.6%. For the elderly it was slightly higher (Katsouyanni K. et al., 2001).

The increase was highest in cities with high concentrations of NO2 (0.80%) and a warm climate (0.82%).

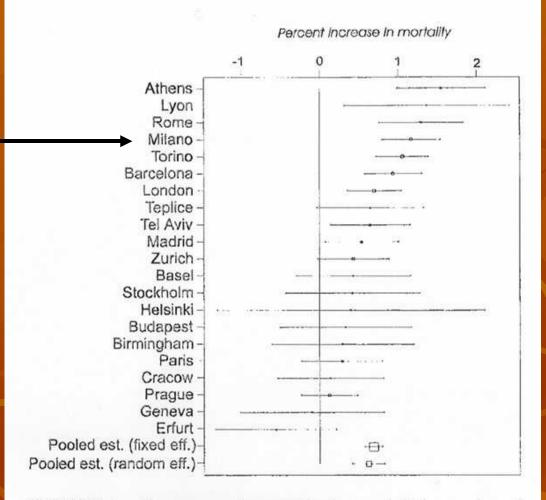


FIGURE 1. Percentage increase in the total daily number of deaths (excluding deaths from external causes) and their 95% confidence intervals associated with an increase of 10 μ g/m³ in the levels of particulate matter less than 10 μ m in aerodynamic diameter in each city. The size of the point representing each increase is inversely proportional to its variance.

Some air pollution-mortality associations found in Europe-2

(WHO, Air Quality Guidelines for Europe, 2000).

Table 3. Estimated number of deaths (in a population of 1 million) over a period of 3 days characterized by a mean PM_{10} concentration of 50 or 100 ug/m3

Health effect indicator	No. of people affected by a three-day episode of PM10 at:						
	50 ug/m ³	100 ug/m ³					
No. of deaths	4	8					

Some air pollution-mortality associations found in Europe-3

- Hoek G. et al., 2000
 - The Netherlands
 - Population study

Pollutan	Lag	Season	RR
PM10	0-6	Winter	1.022
		Summer	1.090
BS	0-6	Winter	1.025
		Summer	1.111
SO ₄ ²⁻	_1	Winter	1.027
		Summer	1.057
NO ₃ -	1	Winter	1.054
		Summer	1.072
O ₃	1	Winter	0.988
		Summer	1.074
SO ₂	0-6	Winter	1.033
		Summer	1.068
NO ₂	0-6	Winter	1.025
		Summer	1.042
СО	0-6	Winter	1.038
		Summer	1.199

Note: Lag 1 is previous day concentration; lag 0-6 is weekly average concentration (average of lag 0-6

Some air pollution-mortality associations found in Europe-4

Table 4. Estimated number of O_3 and PM_{10} related deaths in the summers of 2000, 2002 and 2003 (heatwave) in the Netherlands (population around 16 million) (Fisher et al., 2003)

Period	Estimated number of deaths related to O3	Estimated number of deaths related to PM10			
June-August 2000	990	1290			
June-August 2002	1140	1380			
June-August 2003	1400	1460			
Excess 2003 vs. 2000	410	160			
Excess 2003 vs. 2002	250	80			

Part 2. Are ambient temperature and mortality associated?

(Katsouyanni et al., 1993)

- Athens, Greece
 - Goal: Do air pollution and air temperature have synergistic effects
 - Greek air pollution and temperature data
 - 1987 heat wave
 - 6 previous years

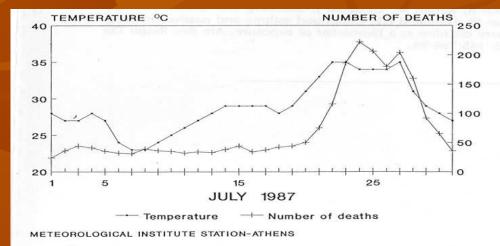


Fig. 1. Daily temperature and mortality.

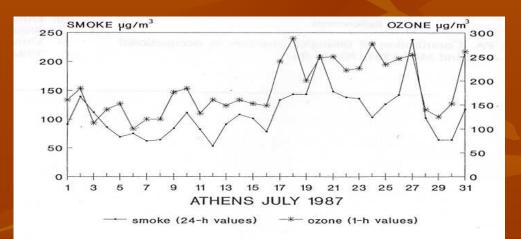


Fig. 2. Daily air pollution levels.

Table 5. Mean daily Number of Deaths During Days withDifferent Levels of 24-h Temperature (Katsouyanni et al., 1993).

Temperature	No. days	No. deaths			
		Avg.	STD		
<25	445	35.6	6.7		
<=25 and	348	36.0	9.1		
<30 >=30	26	85.7	63.8		

Table 6. Mean daily Number of Deaths During Days with Different Levels of 24-h Temperature and Air Pollution Indices (Katsouyanni et al., 1993).

Air pollution index				T	empera	ature			
	<25			<=25-<30			>=30		
	No. days	No. deaths		No. days	No. deaths		No. days	No. deaths	
		Avg	SD		Avg	SD		Avg	SD
Smoke < 125 ug/m ³	256	35.3	6.7	209	36.1	9.8	8	80.3	70.7
Smoke >= 125 ug/m^3	166	36.1	6.3	109	36.1	8.7	17	90.0	63.3
SO2 <80 ug/m ³	415	35.5	6.7	329	35.9	9.3	24	82.4	61.2
$SO2 >= 80 \text{ ug/m}^3$	25	38.6	5.9	12	38.5	7.3	2	126.0	110.3
O3 <150 ug/m ³	19	31.8	7.4	27	38.6	14.7	2	100.0	84.9
$O3 >= 150 \text{ ug/m}^3$	10	33.4	6.5	45	36.1	7.9	10	131.0	76.6

Findings:

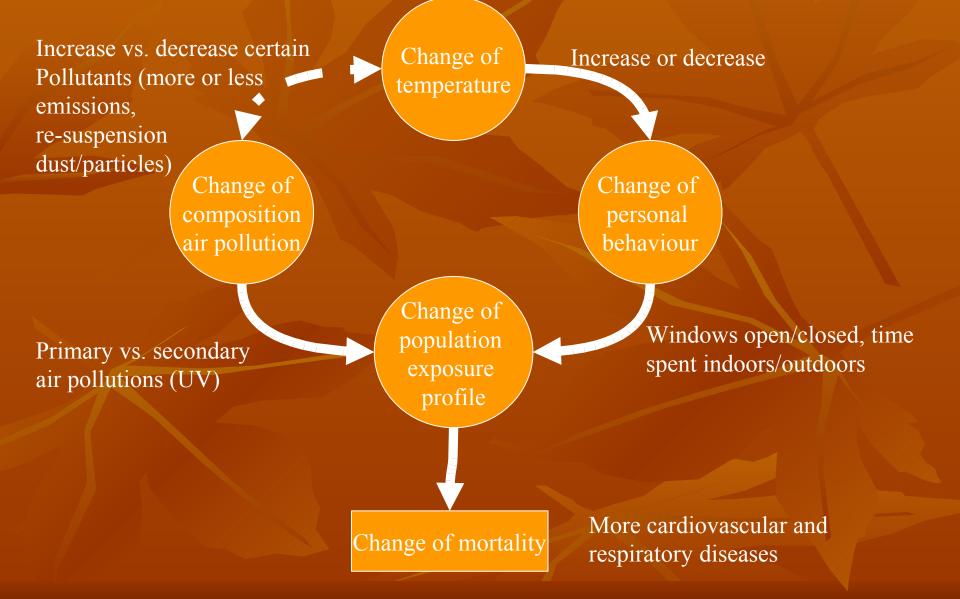
Daily number of deaths increased by more than 40 when the mean 24-h air temperature exceeded 30 degrees Celsius.

The interaction between high levels of air pollution and high temperature (>=30 degrees C) are statistically significant (P<.05) for SO2 and are suggestive (P<.20) for O₃ and smoke.

However,

To prove the cause of mortality in relation to temperature and air pollution is difficult, because a high proportion of deaths during days with extremely high temperatures is attributed to 'heatstroke'.

The fact that high temperature days are mostly also days with relatively high air pollution levels (especially photochemical), questions the conditional variability of both temperature and air pollution.


Part 3. Do ambient temperature and air pollution have a synergistic effect on mortality?

Air pollution- temperature associations
Change of temperature might cause
Dryer conditions

more re-suspension of dust/particles
more biogenic emissions

Speed of atmospheric chemical reactions
 → formation of secondary particles
 → ozone

Relational diagram

Conclusions

1. There is a proven association between

- air pollution and mortality
- temperature and mortality
- 2. The synergistic effects of air pollution and ambient temperature on excess mortality remain suggestive.

Climate change...

....affects the daily temperature and consequently some human behaviour characteristics (open/closed windows, time spent outdoors) changing the personal exposure to air pollution.

....is expected to rise the mean global temperature affecting the state of health of the world's population.

Because of its important public health implication this topic deserves more attention.

Research option

 Gather more insight to impact on public health during urban traffic blocks.

Acknowledgements

Frank Raes - PhD European Commission - Joint Research Centre Institute for Environment and Sustainability Head of the Climate Change Unit

Grazie per l'attenzione